
International Journal of Engineering Applied Sciences and Technology, 2022
Vol. 7, Issue 5, ISSN No. 2455-2143, Pages 99-103

Published Online September 2022 in IJEAST (http://www.ijeast.com)

99

AUTOMATING DEPLOYMENTS OF THE

LATEST APPLICATION VERSION USING CI-CD

WORKFLOW

Spoorthi Jayaprakash Malgund, Dr Sowmyarani C N

Department of Computer Science and Engineering

RV College of Engineering, Bengaluru, Karnataka, India

Abstract— The actions a developer should take to deploy a

new version of a software product are essentially specified

by a CI CD pipeline. The developer would still have to

perform the same tasks manually, which is much less

efficient if the pipeline is not automated. Thus, the steps

listed below are experienced by most software releases. We

give an overview of how a secure SDLC process, along

with continuous integration and continuous deployment, is

used to automate the deployment of a new version of an

application. This allows software development teams to

concentrate on meeting business requirements while

ensuring code quality and software security.

Keywords— CI/CD, Jenkins, Spinnaker, AWS,

Kubernetes, GitHub.

I. INTRODUCTION

All businesses nowadays are moving toward automating a

number of processes in an effort to save time and increase

productivity. By adding automation to the various stages of

app development, CI/CD is a technique for regularly

delivering apps to clients. Continuous integration, continuous

delivery, and continuous deployment are the three core CI/CD

concepts. CI/CD is a solution to the issues that development

and operations teams may encounter while integrating new

code. In particular, CI/CD brings continuous monitoring and

continual automation throughout the whole lifespan of an app,

from the integration and testing stages to the delivery and

deployment stages. The development and operations teams

supporting this "CI/CD pipeline" collaborate in an agile

manner using either a DevOps or Continuous Delivery

approach.

II. BACKGROUND

The objective of contemporary application development is to

have numerous developers working on various aspects of the

same app concurrently. The effort that results, however, can

be laborious, manual, and time-consuming if a company is set

up to combine all branching source code in one day [5]. This

is so that modifications made to an application by a developer

working alone won't necessarily conflict with other changes

being made to the same application at the same time. Instead

of the team deciding on a single cloud-based IDE, this issue

may be made worse if each developer has customized their

own local integrated development environment (IDE).

Developers can more frequently—sometimes even daily—

merge their code changes back into a shared branch, or

"trunk," with the aid of continuous integration (CI). When a

developer merges changes to an application, the changes are

checked to see whether they haven't broken the app by

automatically creating the application and executing various

levels of automated testing, often unit and integration tests.

This entails testing each component of the software, including

its many modules as well as its classes and functions. If

automated testing identifies a conflict between updated and

legacy code, continuous integration (CI) facilitates quick and

frequent issue fixes.

Continuous delivery automates the deployment of that

validated code to a repository after the automation of builds

and unit and integration testing in CI. Therefore, it's critical

that CI be already included in your development pipeline to

have a successful continuous delivery process. A codebase

that is constantly prepared for deployment to a production

environment is the aim of continuous delivery.

Every step in continuous delivery—from merging code

changes to delivering builds fit for production—involves test

automation and code release automation. The operations team

can then swiftly and easily deploy an app to production after

that procedure is complete.

The continuous deployment marks the end of a well-

developed CI/CD pipeline. Continuous deployment is an

extension of continuous delivery, which automates the release

of a build that is ready for production to a code repository, and

it automates the release of an app to production. Continuous

deployment largely relies on carefully thought-out test

automation because there is no manual gate at the pipeline

level before production. Continuous deployment implies that a

developer's contribution to a cloud application might go online

within minutes of being written (assuming it passes automated

testing). It is now much simpler to regularly gather and

consider customer input. When all these related CI/CD

techniques are used, the deployment of an application

becomes less hazardous, making it simpler to release app

modifications incrementally rather than all at once. The

International Journal of Engineering Applied Sciences and Technology, 2022
Vol. 7, Issue 5, ISSN No. 2455-2143, Pages 99-103

Published Online September 2022 in IJEAST (http://www.ijeast.com)

100

significant upfront investment is also required because a

number of testing and release phases in the CI/CD pipeline

need the creation of automated tests.

III. RECENT STUDY

Leonardo, et al. [1] explain the current survey and the

difficulties with DevOps from the viewpoints of engineers,

managers, and researchers in Leite. We conduct a study of the

literature and create a conceptual map of DevOps, connecting

the principles to the DevOps automation technologies. We

next go into their real-world ramifications for researchers,

managers, and engineers. Finally, we examine some of the

most important DevOps difficulties mentioned in the literature

critically. We have covered the DevOps principles and issues

raised in the literature in this survey. By connecting these

ideas to specific technologies, we helped practitioners select

the best toolkit.

The methodical presentation of the most important ideas,

resources, and consequences from the viewpoints of

academics, managers, and engineers—including developers

and operators—helps IT, professionals, as well. Based on each

profile, we think our reader can now more clearly grasp how

DevOps affects daily tasks. The two cornerstones of DevOps

are automation and cross-departmental human cooperation.

The major goal of this project is to automate the creation of a

project in Maragathavalli [2], which covers the phases of

creating the code, testing it, and project deployment, all of

which take more time to do manually. To offer a mechanism

for tracking, resolving, and automating application issues. 2)

To create a system, a continuous pipeline method of

development, testing and deployment is used. - Since there

will be several modifications to the organization every day,

each of these changes requires a unique build.

In terms of increased productivity mentioned in the Sikender

[3], DevOps allows teams to take more time to create value.

Developers won't have to wait while computers are being set

up or code is being installed if firms adopt automated testing

and installation. By selecting a button on the self-service

portal, you may complete both chores. For example, some

European banks have used DevOps in their business systems,

which has improved the delivery of online banking upgrades

by 25%. Additionally, it lessens the effort for the IT staff,

allowing them to concentrate on more challenging tasks that

will benefit the firm more.

To improve performance code and hasten recovery,

developers also begin work on their next project as soon as

new products hit the market. Because of this, they seldom

have a strong reason to anticipate or stop potential software

difficulties; instead, the operations team is always in

command. DevOps, on the other hand, involves engineers

across the whole software life cycle, resulting in higher-

quality code. A few changes are also necessary so that

developers can monitor any potential code problems and fix

them. Developers may be more easily held liable for faults that

occur in any one product since they create less code overall

[4].

IV. TOOLS USED IN CI/ CD WORKFLOW

Jenkins

One of the most popular continuous

delivery and continuous integration

tools available is an open-source CI

automation server. Jenkins, the top

open-source automation server, offers

thousands of plugins to help with

creating and automating any project.

Once a project has been tested,

Jenkins also offers CD code

deployment

SonarQube

A continuous code analysis tool that

is open-source that contributes to

improved source code quality

Spinnaker

A multi-cloud continuous delivery

technology called Spinnaker allows

for the release and deployment of

software updates across many cloud

providers.

GitHub

Software projects are stored, tracked,

and collaborated on using GitHub, an

online platform for software

development.

Docker Hub

For the purpose of locating and

sharing container images with your

team, Docker offers the service of

Docker Hub

Helm Repo

Remote servers that house a

collection of Kubernetes resource

files are known as helm chart

repositories.

V. METHODOLOGY

I. CONFIGURE THE ENVIRONMENTS

i. Set up Kubernetes cluster on Teleport

Secure, consistent access to your Kubernetes clusters may be

provided through Teleport. Set up SSO for authenticating to

the teleport cluster after deploying teleport in a Kubernetes

cluster first.

One will install a single Teleport pod running the Auth

Service and Proxy Service in your Kubernetes cluster as part

of this setup, as well as a load balancer that permits traffic

from the outside world to reach your Teleport cluster. The

Teleport cluster that is operating inside of your Kubernetes

cluster may then be used by users to access it. a website with

registration. This is necessary for Teleport clients to validate

the Proxy Service host and for Teleport to configure TLS

using Let's Encrypt. The load balancer we deploy in this post

requires a Kubernetes cluster hosted by a cloud provider.

The deployment of a single Teleport pod utilizing a persistent

volume as a backend. The settings of CLUSTER NAME and

International Journal of Engineering Applied Sciences and Technology, 2022
Vol. 7, Issue 5, ISSN No. 2455-2143, Pages 99-103

Published Online September 2022 in IJEAST (http://www.ijeast.com)

101

EMAIL, where CLUSTER NAME is the domain name you

are using for your Teleport deployment and EMAIL is an

email address used for alerts, should be changed in accordance

with your environment. An external load balancer is used by

Teleport's Helm chart to generate a public IP address. Create

two A DNS records: *.tele.example.com for web apps that use

Application Access, and tele.example.com for all other traffic.

Make a local user first, then SSO for Kubernetes, then last

ii. Host a Docker Registry

Establishing a Kubernetes environment and installing a TLS-

enabled Private Docker Registry as a Pod. This will enable us

to upload our specially created images to the registry, from

whence any worker node may download them and execute

them as containers in Pods.

iii. Host a Helm Repository

Helm Charts are only a collection of Kubernetes YAML

manifests that can be distributed across your Kubernetes

clusters as a single package. It can be laborious and time-

consuming to create and maintain Kubernetes YAML

manifests for all the necessary Kubernetes objects. You would

require at least three YAML manifests with duplicated and

hard coded variables for the most straightforward

deployments. This procedure is made simpler by Helm, which

generates a single package that can be marketed to your

cluster.

Tiller (the helm server) was formerly required to be deployed

in your cluster in order for Helm, a client/server application, to

function. When you initialise the helm on your client system,

this is installed. Tiller merely takes client requests and instals

the requested package into your cluster. Helm is similar to

Linux's RPM or DEB packages in that it gives developers an

easy way to package and distribute a programme for

installation to its end customers.

Helm consists of two components: the client (CLI), which is

installed on your computer, and the server (Tiller), which is

used to carry out operations on the Kubernetes cluster. Tiller

will ensure that the state is indeed the case by adding,

updating, or removing resources from the chart once the CLI

pushes the resources you require. There are three ideas we

need to become familiar with in order to completely

understand helm:

iv. Create an Isolated Environment- Dev, Stage, Prod

Dev, Stage/ Integration, and Prod are the three environments

you should create in the Kubernetes cluster. The environment

on your PC is the development environment.

You will make all your code modifications here. It's where all

your branches and commits, as well as those of your

coworkers, are stored. The configuration of the development

environment differs often from that of the user's workspace.

The production environment and the stage environment are as

comparable as they may be. This time, rather of having the

code on a local machine, it will be located on a server.

Without affecting the production environment, it will attempt

to connect to as many services as it can.

Here is where the hard-core testing takes place. Both database

migrations and configuration modifications will be tested here.

The stage environment assists in identifying and resolving any

difficulties that may arise while doing significant version

changes.

 Users can view the final code in the production environment

after all upgrades and testing. This habitat is the most crucial

of all the others.

VI. CODE DEVELOPMENT

a. Code Commit- Version control is another name for a step

of code commit. A commit is an action that uploads a

developer's most recent modifications to the repository.

Every revision of a developer's code is permanently

archived. Developers create the code and commit after the

software requirements, feature additions, bug fixes, or

change requests are finished after discussion and

evaluation of the changes with collaborators. Source Code

Management is the process of managing the repository

where modifications and commit changes are made (SCM

tool). Code modifications are incorporated into the base

code branch kept at the central repository, such as GitHub

once the developer submits a code commit.

b. Static Code Analysis using SonarQube- When a

developer produces code and publishes it to a repository,

the system is immediately prompted to begin the

subsequent code analysis process. Imagine a stage where

the code is directly built after being committed but fails

either during the build or deployment. When it comes to

the use of resources, both human and mechanical, this

process becomes sluggish and expensive. The code must

be examined for static policies. Static application security

testing, also known as SAST, is a white box testing

technique that looks at the code from the inside using

SAST tools like SonarQube etc. to identify weaknesses

and flaws in software. The code is quickly examined for

any syntactic mistakes throughout this procedure.

VII. CODE DEVELOPMENT

a. Build

Check out the code and load the Jenkins file. A webhook can

be designed to automatically trigger the pipeline after a

commit. A docker container must be set up as build agents for

Jenkins. Then, a Jenkins Pipeline needs to be created with the

necessary configurations and stages.

The GitHub directory is linked to the pipeline along with the

branch. Jenkins then pulls the latest code changes and builds

the pipeline. After the pipeline builds, the latest version

packages will be uploaded to the AWS S3 buckets. Merging

International Journal of Engineering Applied Sciences and Technology, 2022
Vol. 7, Issue 5, ISSN No. 2455-2143, Pages 99-103

Published Online September 2022 in IJEAST (http://www.ijeast.com)

102

routine code contributions and continually producing artifacts

is one of the objectives of continuous integration. By

immediately identifying errors and determining if the newly

introduced module works well with the old modules, this

technique can help developers. As a result, it contributes to

shortening the total time needed to test a new code update.

The compilation and creation of executable files or packages

is assisted by the build tools. Every day, several builds could

be made, making it challenging to keep track of them all.

Therefore, the build is transferred to the S3 bucket for storage

as soon as it is created and confirmed.

b. Testing

There are several kinds of CI tests to run throughout the

automated build as the CI process progresses from the point at

which it is initiated (i.e., when code is checked in) to the point

at which an artifact is released.

 Code Quality Test: Code quality tests may or may not be

a component of the CI process, depending on when the

formal CI process begins and whether a quality gate for

checking in or merging code is present. Code quality tools

that concentrate on static code analysis, like SonarQube

and GitHub CodeQL, are careful during code

modifications. Although code analysis might suggest

quality, code by itself does not execute and take into

consideration all of the infrastructure and environment

variables that power operating software.

 Unit Test: Unit tests are the fundamental tests that are

carried out when new features are added, developed, or

updated. The DockerFile is used in the Jenkins pipeline to

run the unit test. The code blocks and methods that

changed are the focus of unit testing. These would cover

the functionality of the application if creating a brand-new

project from scratch. Unit tests are frequently used in-

process testing, which creates fake objects and verifies

assertions. In the JAVA world, JUnit, and in the NPM

world, Mocha. A suite of granular unit tests is how they

are intended to operate.

 Integration Test: Cross-module testing of the application

will be the main emphasis of integration testing in the

context of continuous integration. Modern unit and

integration testing technologies have a lot of overlap.

Since JUnit can chase/follow/invoke the method calls that

can be chained together, it can be used for both unit and

integration tests. As the newly added features and fresh

code modifications are perceived to be interoperable,

integration testing continues the confidence continuum.

FIG 1: BASIC FLOWCHART OF CI/CD WORKFLOW

VIII. CODE DEPLOYMENT

i. Pushing Helm Chart and Docker Registry

After the build is successfully initiated, an application docker

image is built and delivered to Docker Registry. A file called a

Docker image is used to run programs within a Docker

container. Docker images serve as a template or collection of

instructions for creating a Docker container. When utilizing

Docker, the starting point is also a set of images. A snapshot

and an image are similar concepts in virtual machine (VM)

settings.

As "the package management for Kubernetes," Helm is well-

known. This implies that if you use the install command for

the top-level chart, Helm installs the whole dependency tree of

a project. Instead of listing the files to install using kubectl,

you only need to run one command to install your complete

application. Charts provide us with the same ability to version

manifest files as we do with Node.js or any other product. This

enables you to install particular chart versions, allowing you to

maintain particular code configurations for your infrastructure.

Since Kubernetes is natively supported by Helm, getting

started with Helm doesn't require writing any elaborate syntax

files or other files. The template files may simply be dropped

into a new chart to get things started.

ii. Deploy to Kubernetes using Spinnaker

The lifecycle path to deployment is usually as follows:

Development - > Integration - > Staging -> Production

Deployment

to

Development

 The latest version of the code is

found in the development environment.

 The goal of the development

environment is to allow software

developers to batch code changes

together and deploy them via CD to the

remote Dev environment.

 Developers deploy it using

spinnaker to see if their code changes are

working as expected in a production-like

environment.

Deployment

to Stage
 Engineers push the code to

staging using their deployment pipeline

now that they have the build artifact for

International Journal of Engineering Applied Sciences and Technology, 2022
Vol. 7, Issue 5, ISSN No. 2455-2143, Pages 99-103

Published Online September 2022 in IJEAST (http://www.ijeast.com)

103

it.

 Before our code problems

become our customers, this is the last

chance to identify bugs, performance

regressions, and security risks.

 Even if tests have been

finished, it's usually a good idea to

manually check features out in staging.

 The production environment

and the staging environment should be

as similar as feasible.

Deployment

to Prod
 The live application is the

production environment. The latest

software or items that have been made

available for usage by the intended

consumers is referred to as the

production environment.

 Any and all issues need to be

resolved before something enters the

production environment, and the product

or upgrade must function flawlessly.

 While new products and

upgrades are initially released in the

production environment, all testing is

done in the development and staging

environments. Any flaws that are present

in the production environment will be

visible to the user.

IX. CONCLUSION

To enable quicker build, delivery, and deployment cycles, you

should give CI/CD implementation top priority in your

product development setup. It assists in automating the

processes required for the end-users to have access to the

program and its various versions. The advantages of CI-CD

over manual deployments for deploying app versions include

an increased focus on core tasks, the growth of an agile

mindset, better code quality, faster time to market, and other

benefits.

X. REFERENCES

[1] Leite, Leonardo, et al (2020) - A Survey of DevOps

Concepts and Challenges, ACM Computing Surveys,

vol. 52, no. 6, pp. (1–35)

[2] Maragathavalli, P.(2020) - Automation Pipeline and

Build Infrastructure Using DevOps, International

Journal for Research in Applied Science and

Engineering Technology, vol. 8, no. 11, (pp. 882–886).

[3] Mohammad, Sikender Mohsienuddin. (2018). Improve

Software Quality through practicing DevOps

Automation. SSRN Electronic Journal. 6, (pp. 251-

256).

[4] Erich, F. M., et al. (2017)- A Qualitative Study of

DevOps Usage in Practice, Journal of Software:

Evolution and Process, vol. 29, no. 6 (pp 1-20)

[5] Weber, I.; Nepal, S.; Zhu, L., (2016) Developing

Dependable and Secure Cloud Applications. IEEE

Internet Comput. 20, (pp 74–79). [CrossRef]

[6] Len Bass, Ralph Holz, Paul Rimba, An Binh Tran, and

Liming Zhu. (2015). Securing a Deployment Pipeline.

In Proceedings of the 2015 IEEE/ACM 3rd

International Workshop on Release Engineering

(RELENG '15). IEEE Computer Society, USA, (pp 4–

7).

[7] S. Garg, P. Pundir, G. Rathee, P. K. Gupta, S. Garg and

S. Ahlawat, (2021) "On Continuous Integration /

Continuous Delivery for Automated Deployment of

Machine Learning Models using MLOps," 2021 IEEE

Fourth International Conference on Artificial

Intelligence and Knowledge Engineering (AIKE), 2021,

(pp. 25-28)

[8] A. Cepuc, R. Botez, O. Craciun, I. -A. Ivanciu and V.

Dobrota,(2020) - Implementation of a Continuous

Integration and Deployment Pipeline for Containerized

Applications in Amazon Web Services Using Jenkins,

Ansible and Kubernetes, 19th RoEduNet Conference:

Networking in Education and Research (RoEduNet),

2020, (pp. 1-6)

[9] L. Jenkins, "Title: Challenges in deployment of wireless

sensor networks," (2014), 9th International Conference

on Industrial and Information Systems (ICIIS), 2014,

(pp. 1-1).

[10] H. Rajavaram, V. Rajula and B. Thangaraju, (2019)

"Automation of Microservices Application Deployment

Made Easy By Rundeck and Kubernetes," IEEE

International Conference on Electronics, Computing

and Communication Technologies (CONECCT), 2019,

(pp. 1-3)

